Dr. Wei-Kuo Tao

Senior Research Scientist
Mesoscale Atmospheric Processes Laboratory (Code 612) 
NASA/Goddard Space Flight Center
Greenbelt, MD 20771
(301) 614-6269
Email: Wei-Kuo.Tao-1@nasa.gov



  • B.S., Atmospheric Physics, National Central University, 1974.
  • M.S., Ph.D., Atmospheric Science, University of Illinois, 1978, 1983.
  • M.S., Computer Science, The Johns Hopkins University, 1987.



  • Goddard Space Flight Center, NASA, since (1989-
  • Adjunct Professor, Department of Atmospheric & Oceanic Science Physics, University of Maryland (2014-)
  • Adjunct Chair Professor, Department of Atmospheric Physics, National Central University (2011 - )
  • Adjunct Professor, Department of Atmospheric Science, Texas A&M (2004 - )
  • Affiliate Faculty, Department of Atmospheric Science, Colorado State University (2000-2006, 2009-2013)
  • Adjunct Professor, Department of Atmospheric Physics, National Central University (2008 - )
  • Lecturer, University of Maryland (2006, 2007, 2009, 2012, 2018)
  • Lecturer, Monash University - Australia (1989)
  • Senior Research Scientist, General Sciences Corporation, 1984-1989.
  • Research Associate, National Research Council/National Academy Science Postdoctoral Fellowship, 1982-1984.


Professional Society Memberships and Services

  • Chair, AGU Committee on Precipitation and Cloud (2001- 2007)

  •  Editor, J. Atmos. Sci. (2001 – 2003)

  • Editor, AMS Meteorological Monographs - Symposium on Cloud Systems, Hurricanes and TRMM (2001)

  • Editor, Special issue on high-resolution modeling, Japan Meteorological Society of Japan (2007)

  • Member of External Advisory Committee, USA NSF-Taiwan Partnership for International Research and Education (PIRE), 2018

  • Member of Advisory Board, Centre of Excellence in Climate Modeling, IIT, India, 2018

  • Member of Scientific Advisory Committee. Korea Institute of Atmospheric Prediction Systems (KIAPS), S. Korea, 2018

    Member of Advisory Board, CSU/JPL, D-Train, EV-M, 2018

  • NASA TRMM and Precipitation Measuring Mission Science Team (1991-  )

    NASA MAP (Modeling Analysis and Prediction) Science Team (2005 -  )

  • NASA Energy and Water Cycle Study (NEWS) Science Team (2005 -  2018)

  • DOE/ARM/ASR Science Team (2003 - 2018)

  • Chair, NASA TRMM/GPM Latent Heating Committee (2004 - )

  • Co-Chair, NASA PMM Weather/Climate User Working Group (2007 – 2010)

  • Member of NASA GSFC Laboratory of Atmosphere Seminar Committee (2006 - 2010)

  • Member of NASA Goddard William Nordberg Award Committee (2009 - )

  • Co-Chair, NASA Goddard “Cloud and Precipitation Processes” Cross-Cutting Science Theme (2006 - 2011)

  • Co-Chair and Organizer, NASA GSFC & University of Maryland WRF workshop (2007)

  • Member, NASA GPM GV Advisory Panel (2005 - )

  • Member, NASA MAP06 Science Working Group (2006)

  • Chair, Committee for the NASA Goddard Earth Science Achievement Award (2004)

  • Member, NOAA NCEP/NCAR Weather Research and Forecast (WRF) Science Board (2000- 2005)

  • Chair and Organizer, The 1st- 11thTRMM Latent Heating Workshop (2001-2018)

  • Chair and Organizer, The 2ndNASA Cloud Modeling Workshop (2004)

  • Member of the Scientific Steering Committee for the GEWEX Cloud System Study (GCSS) Group 4 (Precipitating Convective Cloud Systems) (1994 -2000)

  • Chair and Organizer, International Workshop on Cumulus Parameterization (2001)

  • American Meteorological Society Committee on Mesoscale Processes (1996-1999)

  • Scientific Visitor Program, National Center for Atmospheric Research/MMM (1995)Scientific Visitor Program, Joint Center for Mesoscale Meteorology (JCSS), University of Reading, UK (1994)


Honors and Awards:

  • NASA Goddard William Nordberg Award, 2008(the highest Goddard award in the Earth Sciences)
  • Fellow, American Meteorological Society, 2001
  • Fellow, Royal Meteorological Society, 2000
  • Fellow, Meteorological Society, Republic of China, Taiwan, 2018
  • Excellent Alumni Award, National Central University, 2006
  • NASA Exceptional Scientific Achievement Medal, 1992 and 2003 (NASA’s highest honor for a scientific achievement)
  • NASA Goddard Space Flight Center – Earth Science Achievement Award (2ndrecipient), 2003 (Goddard’s highest honor for a scientific achievement in Earth Science)
  • Excellent Alumni Award, Department of Atmospheric Physics, National Central University, 2009
  • NASA Group Achievement Award - CRYSTAL-FACE Science Team, 2003
  • NASA Group Achievement Award – Goddard Mesoscale Dynamic and Modeling Team, 2017
  • NASA Group Achievement Award - GPM Post-Launch Team, 2015
  • NASA Goddard Space Flight Center/Laboratory for Atmospheres - Scientific Research Award, 1993, 1996
  • NASA/Goddard Space Flight Center – Performance Award, 1992-1997, 2000, 2002-2018
  • NASA/Goddard Space Flight Center – Special Act Award, 1993, 1994, 1996, 1998, 1999, 2001, 2007, 2008
  • NASA/Goddard Space Flight Center –Quality Increase Award, 1994, 1996, 2007Chinese Natural Science and Cultural Scholarship, Ministry of Education, 1973



Tao has more than 40 years of experience in cloud-precipitation physics and modeling mesoscale convective systems. Tao is the primary developer of the Goddard Cumulus Ensemble (GCE) model and the leader of the Goddard Mesoscale Modeling and Dynamics Group (consists of 8 scientists). Several national and international universities and research institutions are using the GCE model and its results in their research as well as students’ Ph. D. thesis. Tao has given more than 120 invited talks/visits to 60 different national (US) and international laboratories and universities. Tao has published more than 240 [8 as 1st author since 2014] in refereed literature, Encyclopedia, books and Monographs, and more than 200 conference presentations, on tropical cloud systems and modeling, applying the cloud resolving model to understand cloud-precipitation-aerosol interaction, -air-sea interaction, convective-stratiform interaction, cloud-radiation interaction, cloud-chemistry interaction, and cloud-large-scale environment interaction, developing the latent heating profile retrieval using satellite (TRMM and GPM) derived precipitation property and surface rainfall data. Tao was a member of AMS Committee on Mesoscale Processes (1996-1999).  He was the Editor of the Journal Atmospheric Science from 2001- 2003, and Editor, Special issue on high-resolution modeling, Japan Meteorological Society of Japan, 2007.  He served the Guest Editor, AMS Meteorological Monographs - Cloud Systems, Hurricanes and TRMM (2001-2002). He was the Chair of AGU Committee on Precipitation and Cloud. Tao is international known in cloud resolving modeling for studying cloud and precipitation processes and their impact on radiation, surface and aerosol.  For example, Tao was invited to contribute a chapter in Global Water and Energy Cycles published by Cambridge University Press in 1999 and a chapter on cloud model published in Encyclopedia of Atmospheric Sciences in 2003 and 2015 Edition. Tao is also contributed a chapter on aerosol-precipitation in Encyclopedia of Atmospheric Sciences in 2015 Edition.  Tao was invited to contribute a review article on cloud resolving models for 125th Anniversary issue of Japan Meteorology Society.  Tao was invited to submit two review papers on cloud resolving model and impact of aerosol on deep precipitation system published in AGU Reviews of Geophysics, respectively. These papers review the status and prospects of Cloud Resolving Models across a wide range of issues, such as microphysics and precipitation; interaction between clouds and radiation; the effects of and aerosol on cloud and precipitation systems (Tao and Moncrieff, 2009 and Tao et al. 2012).  In addition, Tao was invited to publish a review paper on impact of microphysics on intensity and track of hurricanes, special issue on MCSs and high impact Weather and Climate in East Asia – Pacific (Tao, 2011). Tao, NASA Goddard Space Flight Center, has been selected to receive the Goddard Earth Science Achievement Award in 2003.  This award recognizes individual who has made the most significant NASA Center contributions in Earth Science.  Tao has also been selected to receive the NASA Exceptional Scientific Achievement Award in 2003.  This medal is awarded for unusually significant scientific contributions toward achievement of earth science, aeronautical or space exploration goals. This is the second time Wei-Kuo Tao receives the NASA Exceptional Scientific Achievement Award (only very few NASA Scientists to receive 2nd NASA Exceptional Scientific Achievement Award).  Recently, Tao and his group just received the NASA Group Achievement Award – Goddard Mesoscale Modeling and Dynamic Team in 2017. The citation is ”For exceptional achievement as international leaders and facilitators of cloud and precipitation science fort several decades”. Tao was elected to be a Fellow of American Meteorological Society in 2001, a Fellow of Royal Meteorological Society in 2000, and Fellow of Meteorological Society, Republic of China, Taiwan in 2018.  Tao was the recipient of the “Excellent Alumni Award” from National Central University in 2006. The citation is “For his significant contribution in using cloud resolving model to improve our understanding of cloud and precipitation processes and their impact on radiation, surface and climate variations in Tropics”.  Dr. Tao is one of the 1st recipients of “Excellent Alumni Award” from Department of Atmospheric Physics, National Central University to celebrate the Department’s 40th Anniversary in 2009. In addition, Tao was received the NASA Goddard William Nordberg Memorial Award for Earth Science in 2008.  This honor is the highest Goddard award in the Earth sciences and recognizes sustained, significant scientific contributions to Goddard and NASA in the Earth Sciences. The award is given annually to a Goddard employee "who best exhibits qualities of broad scientific perspective, enthusiastic programmatic and technical leadership on the national and international levels, wide recognition by peers and substantial research accomplishments in understanding Earth science processes".  The citation of the William Nordberg Memorial Award: Dr. Wei-Kuo Tao is being recognized as NASA preeminent expert on cloud systems, which is an essential component of Earth’s climate system.  His scientific contributions – over the past three decades – to our fundamental understanding of how cloud systems work is truly phenomenal spanning the full spectrum of physical processes and types of systems. Tao has recognized the contributions of his mentor, Dr. Joanne Simpson by co-editing with Robert Adler on AMS Monograph:Symposium on Cloud Systems, Hurricanes and TRMM (2003), tribute to Dr. J. Simpson. Amer. Meteor. Soc. Monograph, 31, 234 pp. Tao and his group have provided better 3ICE scheme (Lang et al., 2007) and Goddard long- and short-wave radiation scheme to NCAR Advanced Research Weather Research Forecast (ARW) model for community use.  The Goddard new 4ICE scheme and Goddard improved long- and short-wave radiation scheme are just implemented into NCAR WRF in June 2019 (available for WRF community).


Special Experience:

Tao has more than 35 years of experience in cloud physics and modeling mesoscale convective systems. He is the primary developer of the Goddard Cumulus Ensemble (GCE) model and the leader of the Goddard Mesoscale Modeling and Dynamics Group. Several national and international universities and research institutions are using the GCE model andits results in their research. He has given more than 120 invited talks/visits to 60 different national (US) and international laboratories and universities.  


Refereed Publications:

More than 240 [8 as 1st author since 2014] in refereed literature, Encyclopedia, books and Monographs, and more than 200 conference presentations, on tropical cloud systems and modeling, applying the cloud resolving model to understand cloud-precipitation-aerosol interaction, -air-sea interaction, convective-stratiform interaction, cloud-radiation interaction, cloud-chemistry interaction, and cloud-large-scale environment interaction, developing the latent heating profile retrieval using satellite data. Citation ~ 16,900 (~5,000 since 2015), h-index = 72 (36 since 2015), i10-indxt = 197 (Google Scholar)



Graduate Adviser and Post-Doc Mentor:

S.-T. Soong, U. of Illinois at Urbana-Champaign (M.S. and Ph. D.)
Joanne Simpson, NASA Goddard Space Flight Center



Tao, W.-K., 1978: A numerical simulation of deep convection in the tropics. M.S. Thesis, University of Illinois, 66 pp.
Tao, W.-K., 1983: A numerical study of the structure and vertical transport properties of a tropical convective system. Ph.D. Dissertation, Department of Atmospheric Science, University of Illinois, 228 pp.


Advised Ph. D. Students:

John Scalar (University of Virginia), Shu-Hwa Chen (Purdue University), Toshi Matsui (Colorado State University), Tom O.’Halloran (University of Virginia), Jiwen Fan (Texas A&M University), Marcia DeLonge (University of Virginia), Ildae Choi (Seoul National University), Nick Guy (Colorado State University), Chao Sun (University of Maryland), Yanni Ding (University of Maryland), Prabhakar Shrestha (Duke University), Young-Min Yang (Seoul National University), Sung-Yoon Kim (Ulsan National Institute of Science & Technology)


Education and Out-Reach Activities:

The Goddard Cumulus Ensemble (GCE) Model and its generated data sets have been used by several US Universities (Columbia University, University of Virginia, University of Washington, University of Michigan, University of Maryland, University of New York at Albany, University of New York at Stony Brooke, Texas Austin College, Purdue University, Florida State University), National Laboratory (DOE Brookhaven Lab) and International Research Centers (Joint Center for Mesoscale Meteorology at the University of Reading, UK; University of Leicester, UK, Monash University, Australia; Hebrew University of Jerusalem, Israel, Seoul National University, S. Korea, National Central University, Taiwan; Ulsan National Institute of Science & Technology, S. Korea).

Have provided Goddard water/ice microphysical and cloud-radiation schemes to Center for Analysis and Prediction of Storm - CAPS (one of seven Science and Technology centers established by the National Science Foundation in 1988).  Have provided the Goddard Microphysics and Cloud-Radiation packages to the Penn State/NCAR MM5. Is currently implementing several Goddard Microphysics schemes, longwave and shortwave radiation and surface processes into the Weather Research Forecast (WRF) model.

Publications [over 240, and 8 as 1st author) since 2014]


 1.   Soong, S.-T.,  and W.-K. Tao, 1980: Response of deep tropical clouds to mesoscale processes.  J. Atmos. Sci. , 37, 2016-2036.

 2.  Soong, S.-T., and W.-K. Tao,1984: A numerical study of the vertical transport of momentum in a tropical rainband. J. Atmos. Sci., 41, 1049-1061.

 3.    Tao, W.-K.,and J. Simpson, 1984: Cloud interactions and merging: Numerical simulations. J. Atmos. Sci.,41, 2901-2917.

 4.   Tao, W.-K., and S.-T. Soong, 1986: A study of the response of deep tropical clouds to mesoscale processes: Three-dimensional numerical experiments. J. Atmos. Sci.43, 2653-2676.

5.     Tao, W.-K., J. Simpson, and S.-T. Soong, 1987: Statistical properties of a cloud ensemble: A numerical study. J. Atmos. Sci.44, 3175-3187.

6.     Garstang, M., J. Scala, S. Greco, R. Harriss, S. Beck, E. Browell, G. Sachse, G. Gregory, J. Simpson, W.-K. Taoand A. Torres, 1988: Trace gas exchanges and convective transports over the Amazonian rain forest, J. Geophys. Res., 93, 1528-1550.

7.     Tao, W.-K., and J. Simpson, 1989: Modeling study of a tropical squall-type convective line.J. Atmos. Sci.46, 177-202.

8.     Tao, W.-K., J. Simpson and M. McCumber, 1989: An ice-water saturation adjustment. Mon. Wea. Rev., 117, 231-235.

9.     Tao, W.-K., and J. Simpson, 1989: A further study of cumulus interaction and mergers: Three-dimensional simulations with trajectory analyses. J. Atmos. Sci., 46, 2974-3004.

10.   Tao, W.-K., J. Simpson, S. Lang, M. McCumber, R. Adler and R. Penc, 1990: An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Meteor., 29, 1232-1244.

11.   Scala, J., M. Garstang, W.-K. Tao, K. Pickering, A. Thompson, J. Simpson, V. Kirchhoff, E. Browell, G. Sachse, A. Torres, G. Gregory, R. Rasmussen and M. Khalil, 1990: Cloud draft structure and trace gas transport, J. Geophys. Res.95, 17015-17030.

12.   Tao, W.-K., J. Simpson and S.-T. Soong, 1991: Numerical simulation of a subtropical squall line over Taiwan Strait. Mon. Wea. Rev.,119, 2699-2723.

13.   Adler, R. F., H.-Y. Yeh, N. Prasad, W.-K. Taoand J. Simpson, 1991: Microwave rainfall simulations of a tropical convective system with a three-dimensional cloud model, J. Appl. Meteor., 30, 924-953.

14.   Pickering, K. E., A. M. Thompson, J. R. Scala, W.-K. Tao, J. Simpson, and M. Garstang, 1991: Photochemical ozone production in Tropical squall line convection during NASA/GTE/ABLE 2A, J. Geophys. Res., 96, 3099-3114.

15.   Pickering, K. E., A. M. Thompson, W.-K. Taoand T. Kucsera, 1991: Ozone production in the tropical upper troposphere as affected by deep convection, EOS, 72, (44), 102.

16.   McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991: Comparison of ice-phase microphysical parameterization schemes using numerical simulations of convection. J. Appl. Meteor., 30, 987-1004.

17.   Pickering, K., E., A. M. Thompson, J. R. Scala, W.-K. Tao,and J. Simpson, 1992:  Ozone production potential following convective redistribution of biomass emissions, J. Atmos. Chem.14, 297-313.

18.   Pickering, K., E., J. Scala, A. M. Thompson, W.-K. Taoand J. Simpson, 1992: A regional estimate of convective transport of CO from biomass burning,", Geophys Res. Letters.,19, 289-292.

19.   Pickering, K. E., A. M. Thompson, J. Scala, W.-K. Tao, R. R. Dickerson and J. Simpson, 1992: Free tropospheric ozone production following entrainment of urban plumes into deep convection, J. Geophys Res.,97, 17985-18000.

20.   Tao, W.-K., J. Simpson, C.-H. Sui, B. Ferrier, S. Lang, J. Scala, M.-D. Chou and K. Pickering, 1993: Heating, moisture and water budgets of tropical and midlatitude squall lines: Comparisons and sensitivity to longwave radiation.J. Atmos. Sci.50, 673-690.

21.   Lau, K. M., C. H. Sui and W.-K. Tao, 1993: A preliminary study of the tropical water cycle and its sensitivity to surface warming, Bull. Amer. Meteor. Soc.74, 1313-1321.

22.   Tao, W.-K.,and J. Simpson, 1993: The Goddard Cumulus Ensemble Model. Part I: Model description. Terrestrial, Atmospheric and Oceanic Sciences4, 35-72.

23.   Simpson, J. and W.-K. Tao, 1993: The Goddard Cumulus Ensemble Model. Part II: Applications for studying cloud precipitating processes and for NASA TRMM. Terrestrial, Atmospheric and Oceanic Sciences4, 73-116.

24.   Tao, W.-K., S. Lang, J. Simpson and R. Adler, 1993: Retrieval Algorithms for estimating the vertical profiles of latent heat release: Their applications for TRMM. J. Meteor. Soc. Japan71, 685-700.

25.   Pickering, K. E., A. M. Thompson, W.-K Taoand T. L. Kucsera, 1993: Upper tropospheric ozone production following mesoscale convection during STEP/EMEX, J. Geophys. Res.98, 8737-8749.

26.   GEWEX Cloud System Science Team, 1993: The GEWEX Cloud System Study (GCSS), Bull. Amer. Meteor. Soc., 74, 387-399.

27.   Sui, C.-H., K. M. Lau, W.-K. Tao, and J. Simpson, 1994: The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate,  J. Atmos. Sci.51, 711-728.

28.   Lau, K. M., C.-H. Sui, M.-D. Chou and W.-K. Tao, 1994: An inquiry into the cirrus-cloud thermostat effect for tropical sea Surface temperature, Geophys Res. Letters.21,1157-1160.

29.   Greco, S., J. Scala, J. Halverson, H. L. Massie, Jr., W.-K. Tao, and M. Garstang, 1994: Amazon coastal squall lines. Part II: Heat and moisture transports, Mon. Wea. Rev.122, 623-635.

30.   Thompson, A. M., K. E. Pickering, R. R. Dickerson, W. G. Ellis, D. J. Jacob, J. R. Scala, W.-K. Tao, D. P. McNamara and J. Simpson, 1994: Convective transport over the central United States and its role in the regional CO and Ozone budgets," J. Geophys. Res.99, 18703-18711.

31.   Lau, K. M., C.-H. Sui, M.-D. Chou and W.-K. Tao, 1994: “Reply to the Comment on the paper, An enquiry into the cirrus-cloud thermostat effect for tropical sea surface temperature, by V. Ramanathan, W. D. Collins and B. Subasilar", Geophys Res. Letters21, 1187-1188.

32.   Tao, W.-K., J. Scala, B. Ferrier and J. Simpson, 1995: The effects of melting processes on the development of squall lines in the tropics and midlatitudes. J. Atmos. Sci .52, 1934-1948.

33.   Prasad, N., H.-Y. M. Yeh, R. F. Adler and W.-K. Tao, 1995: Infrared and microwave simulations of an intense convective system and comparison with aircraft observations, J. Appl. Meteor., 34, 153-174.

34.   Yeh, H.-Y. M., N. Prasad, R. Meneghini, W.-K. Taoand R. F. Adler, 1995: Model-based simulation of TRMM spaceborne radar observations, J. Appl. Meteor.,34, 175-197.

35.   Pickering, K. E., A. M. Thompson, D. P. McNamara, W.-K. Tao, A. M. Molod and R. B. Rood, 1995: Vertical transport by convective clouds: Comparisons between cloud-scale and global-scale model,  Geophys Res. Letters,  22, 1089-1092.

36.   Ferrier, B. S., W.-K. Taoand J. Simpson, 1995: A double-moment multiple-phase four-class bulk ice scheme.  Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations, J. Atmos. Sci.52, 1001-1033.

37.   Wang, Y., W.-K. Tao, K. Pickering, A. Thompson, J. Kain, R. Adler, J. Simpson, P. Keehn and G. Lai, 1996: Mesoscale model (MM5) simulation of TRACE and PRESTORM Convective Systems and Associated Tracer Transport,. J. Geophys. Res.101D19, 24013-24027.

38.   Wang, Y., W.-K. Taoand J. Simpson, 1996: The impact of ocean surface fluxes on a TOGA COARE convective System, Mon. Wea. Rev.,124, 2100-2125.

39.   Simpson, J., C. Kummerow, W.-K. Taoand R. Adler, 1996: On the Tropical Rainfall Measuring Mission (TRMM) Meteor, and Atmos. Phys.60, 19-36.

40.   Ferrier, B. S., J. Simpson and W.-K. Tao, 1996: Factors responsible for different precipitation efficiencies between midlatitude and tropical squall simulations. Mon. Wea. Rev.,124, 2100-2125.

41.   Tao, W.-K., J. Simpson, S. Lang, C.-H. Sui, B. Ferrier, and M.-D. Chou, 1996: Mechanisms of cloud-radiation interaction in the tropics and midlatitudes. J. Atmos. Sci .53, 2624-2651.

42.   Pickering, K.E., , A. Thompson, Y. Wang, W.-K Tao, Bradshaw, Kirchhoff, Alvala, Gregory, Blake, McNamara, Kucsera, 1996: Convective transport of biomass burning emissions over Brazil during TRACE-A, J. Geophys. Res.101, D19, 23993-24012.

43.   Stenchikov, G., R. Dickerson, K. Pickering, W. Ellis, B. Doddridge, S. Kondragunta, O. Pooulida, J. Scala and W.-K. Tao, 1996: Troposphere-stratosphere exchange in a midlatitude mesoscale convective complex: Part 2, Numerical simulations, J. Geophys. Res.,  101, 6823-6836.

44.   Halverson, J. B., M. Garstang, J. Scala and W.-K. Tao, 1996: Water and energy budgets of a Florida mesoscale convective system: A combined observational and modeling study, Mon. Wea. Rev.124, 1161-1180

45.   Ellis, W. G., A. M. Thompson, S. Kondragunta, K. Pickering, G. Stenchikov, R. Dickerson, and W.-K. Tao, 1996: Potential ozone production following convective transport based on future emission scenarios, Atmospheric Environment30, 667-672.

46.   Dharssi, I., R. Kershaw and W.-K. Tao, 1997: Sensitivity of a simulated tropical squall line to longwave radiation. Quart. J. Roy. Meteor. Soc., 123, 187-206.

47.   Thompson, A. M., W.-K. Tao, K. E. Pickering, J. R. Scala and J. Simpson, 1997: Tropical deep convection and Ozone formation, Bull. Amer. Meteor. Soc.78,1043-1054.

48.   Kuo, Y.-H., J. Bresch, M.-D. Cheng, J. Kain, D. B. Parsons, W.-K. Taoand D.-L. Zhang, 1997: Summary of a mini-workshop on cumulus parameterization for mesoscale models,  Bull. Amer. Meteor. Soc.78, 475-492.

49.   Moncrieff, M. W., S. K. Krueger, D. Gregory, J.-L. Redelsperger and W.-K. Tao, 1997: GEWEX Cloud System Study (GCSS) Working Group 4: Precipitating convective cloud systems , Bull. Amer. MeteorSoc.,78, 831-845.

50.   Chen, C., W.-K. Tao,P.-L. Lin, G. S. Lai, S.-F. Tseng  and T.-C. Chen Wang, 1998: The interaction of the low-level jet during the development of mesoscale convective systems in a Mei-Yu front, Mon. Wea. Rev.,126, 349-371.

51.   Lynn, B. H., W.-K. Taoand P. Wetzel, 1998: A study of landscape generated deep moist convection. Mon. Wea. Rev.  126, 928-942.

52.   Pickering, K. E., Y. Wang, W.-K Taoand C. Price, 1998: The vertical distribution of lightning NOx for use in regional and global chemical transport models, J. Geophys. Res.V103, D23, 31203-31216.

53.   Tao, W.-K.,J. Simpson, C.-H. Sui, C.-L. Shie, B. Zhou, K. M. Lau, and, M. Moncrieff, 1999: On equilibrium states simulated by Cloud-Resolving Models. J. Atmos. Sci.  56, 3128-3139.

54.   Olson, W. S., C. D. Kummerow, Y. Hong, and W.-K. Tao, 1999: Atmospheric latent heating distributions in the Tropics derived from satellite passive microwave radiometer measurements, J. Appl. Meteor.38, 633-644.

55.   Das, S., D. Johnson and W.-K. Tao, 1999: Single-column and cloud ensemble model simulations of TOGA COARE convective systems, J. Meteor. Soc. Japan77, 803-826.

56.   Redelsperger, J. L., P. R. A. Brown, F. Guichard, C. Hoff, M. Kawasima, S. Lang, Th. Montmerle,  K. Nakamura, K. Saito, C. Seman, W.K. Taoand L. J. Donner, 2000: A GCSS model intercomparison for  a tropical squall line observed during TOGA-COARE.  Part 1: Cloud-Resolving Models." Q. J. R. Met. Soc.126, 823-864.

57.   Tao, W.-K., R. Adler, S. Braun, F. Einaudi, B. Ferrier, J. Halverson, G. Heymsfield, C. Kummerow, A. Negri and R. Kakar, 2000: Summary of a Symposium on Cloud Systems, Hurricanes and TRMM: Celebration of Dr. Joanne Simpson's Career - The First 50 years, Bull. Amer. Meteor. Soc. 81, 2463-2474.

58.   Tao, W.-K., S. Lang, J. Simpson, W. S. Olson, D. Johnson, B. Ferrier, C. Kummerow and R. Adler, 2000:Vertical profiles of latent heat release and their retrieval in TOGA COARE convective systems using a cloud resolving model, SSM/I and radar data, J. Meteor. Soc. Japan78, 333-355.

59.   Braun, S. A., andW.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991): To planetary boundary layer parameterizations.Mon. Wea. Rev.,128, 3491-3961.

60.   Baker, R. D., B. H. Lynn, A. Boone,W.-K. Taoand J. Simpson, 2001:  The influence of soil moisture, coastline curvature, and the land-breeze circulation on sea-breeze initiated precipitation,J. of Hydrometeorology,2, 193-211.

61.   Lynn, B. H., W.-K. Tao and F. Abramopoulos, 2001: A parameterization for the triggering of landscape generated moist convection, Part I: Analyses of high-resolution model results. J. Atmos. Sci.,58, 575-592.

62.   Lynn, B. H. andW.-K. Tao, 2001: A parameterization for the triggering of landscape generated moist convection, Part II: Zero order and first order closure. J. Atmos. Sci.,58, 593-607.

63.   Lynn, B. H., D. Stauffer, P. Wetzel,W.-K. Tao, P. Alpert, N. Perlin, R. D. Baker, R. Munoz, A. Boone, and Y. Jia, 2001: Improved simulation of Florida summer convection using the PLACE land surface model and a 1.5-order turbulence parameterization coupled to the Penn State/NCAR mesoscale model, Mon. Wea. Rev.,129, 1441-1461.

64.   Peng, L., C.-H. Sui, K.-M. Lau andW.-K. Tao, 2001: Genesis and evolution of super cloud clusters in a 2-d numerical cloud resolving model,J. Atmos. Sci.,58, 877-895.

65.   Tao, W.-K., S. Lang, W. S. Olson, R. Meneghini, S. Yang, J. Simpson, C. Kummerow, E. Smith and J. Halverson, 2001: Retrieved vertical profiles of latent heat release using TRMM rainfall products for February 1998,J. Appl. Meteor.,40, 957-982.

66.   Tao, W.-K., C.-L. Shie and J. Simpson, 2001: Comments on "The sensitivity study of radiative-convective equilibrium in the Tropics with a convective resolving model, J. Atmos. Sci.,58, 1328-1333.

67.   Olson, W. O., P. Bause, C. D. Kummerow, Y. Hong and W.-K. Tao, 2001: A melting layer model for passive/active microwave remote sensing applications - Part I: Model formulation amd comparison with observations. J. Appl. Meteor., 40, 1145-1163.

68.   Olson, W. O., P. Bause, C. D. Kummerow, Y. Hong and W.-K. Tao, 2001: A melting layer model for passive/active microwave remote sensing applications - Part II: Simulation of TRMM observations. J. Appl. Meteor., 40, 1164-1179.

69.   Pu, Z.-X.W.-K. Tao, Y. Jia, J. Simpson, S. Braun, J. Halverson, W. Olson and A. Hou, 2002: The impact of TRMM data on mesoscale numerical simulation of Super Typhoon Paka, Mon. Wea. Rev.,130,2448-2458.

70.   Johnson, D.,W.-K. Tao, J. Simpson, and C.-H. Sui, 2002: A Study of the Response of Deep Tropical Clouds to Mesocale Processes, Part I:  Modeling Strategy and Simulation of TOGA COARE Convective Systems,J. Atmos. Sci.,59, 3492-3518.

71.   Xu, K.-M., R. T. Cederwall, L. J. Donner, F. Guichard, W. W. Grabowski, D. E. Johnson, M. Khairoutdinov, S. K. Krueger, J. C. Petch, D. A. Randall, C. J. Seman,W.-K. Tao, S. Xie, J. Jio and M.-H. Zhang, 2002: Iintercomparison of cloud-resolving models with the ARM Summer 1997 IOP data,Q. J. R. Met. Soc., 128, 593-624.

72.   Zeng, X., Q. Zhang, D. Johnson andW.-K. Tao, 2002:  Parameterization of wind gustiness for the computation of ocean surface fluxes at different spatial scales,Mon. Wea. Rev.,130, 2125-2133.

73.   Mohr, K. I., R. D. Baker, W.-K. Taoand J. S. Famiglietti, 2002: The sensitivity of west African convective lines water budgets to land cover,J. of Hydrometeorology,4, 62-76.

74.   Jorgensen, D. P., Z.-X. Pu, O. Persson andW.-K. Tao, 2003: The structure of a Pacific narrow cold frontal rainband,Mon. Wea. Rev.,131, 2705-2729.

75.   Wang, Y.,W.-K. Tao, J. Simpson, and S. Lang, 2003: The sensitivity of tropical squall lines (GATE and TOGA COARE) to surface fluxes: 3-D Cloud resolving model simulations, Q. J. R. Met. Soc.,129, 987-1007.

76.   Shie, C.-L.,W.-K. Tao, J. Simpson and C.-H. Sui, 2003: Quasi-equilibrium states in the tropics simulated by a cloud-resolving model. Part I: Specific features and budget analysis, J. of Climate,5, 817-833.

77.   Lang, S., W.-K. Tao, J. Simpson, and B. Ferrier, 2003:  Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods. J. Applied. Meteor.,42, 505-527.

78.   Shige, S., Y. N. Takayabu,W.-K. Taoand D. Johnson, 2003: Spectral retrieved of latent heating profiles from TRMM PR data.  Part I: Algorithm development with a cloud resolving model. J. Applied Meteor.43, 1095-1113.

79.   Tao, W.-K., Y. Wang, J. Qian, W. K.-M. Lau, C.-L. Shie and R. Kakar, 2003: Mesoscale Convective Systems during SCSMEX: Simulations with a Regional Climate Model and a Cloud-Resolving Model,Weather and climate Modeling,New Age International (P) Limited, Edited by S.V. Singh, S. Basu and T. N. Krishnamurti, 77-92.

80.   Tao, W.-K., C.-L. Shie, R. Johnson, S. Braun, J. Simpson, and P. E. Ciesielski, 2003: Convective Systems over South China Sea:  Cloud-Resolving Model Simulations.J. Atmos. Sci.,60, 2929-2956.

81.   Tao, W.-K., D. Starr, A. Hou, P. Newman, and Y. Sud, 2003: Summary of cumulus parameterization workshop.Bull.Amer. Meteor. Soc.,84, 1055-1062.

82.   Tao, W.-K., J. Simpson, D. Baker, S. Braun, M.-D. Chou, B. Ferrier, D. Johnson, A. Khain, S. Lang,  B. Lynn, C.-L. Shie, D. Starr, C.-H. Sui, Y. Wang and P. Wetzel, 2003: Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model,A Special Issue on Non-hydrostatic Mesoscale Modeling, Meteorology and Atmospheric Physics,82, 97-137.    http://www.springerlink.com/content/44myc52xcmc3ajxv/fulltext.pdf

83.   Pu, Z., and W.-K. Tao, 2004: Mesoscale assimilation of TRMM rainfall data with 4DCAR: Sensitivity studies.J. Meteor. Soc. Japan, 82, 1389-1397.

84.   Yoshizaki, M., T. Kato, H. Eito, S. Hayashi, and W.-K. Tao, 2004: An overview of the field experiment “Winter Mesoscale convective systems (MCSs) over the Japan Sea 2001”, and comparisons of the cold-air outbreak case (14 January) between analysis and a non-hydrostatic cloud-resolving model. J. Meteor. Soc. Japan82, 1365-1384.

85.   Qian, J.-H.,W.-K. Tao, and K.-M. Lau, 2004: Mechanisms of torrential rain associated with the Mei-yu development during SCSMEX-98, Mon. Wea. Rev.,132, 3-27.

86.   Rajendran, R., T. N. Krishnamurti, V. Misra andW.-K. Tao, 2004: An empirical cumulus parameterization scheme for a global spectral model, J. Meteor. Soc. Japan,82, 989-1006.

87.   Tao, W.-K., D. Johnson, C.-L. Shie, and J. Simpson. 2004: Atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX and ARM: Cloud-resolving model simulations,J. Atmos. Sci., 61, 2405-2423.

88.   Gao, S., F. Ping, X. Li and W.-K. Tao, 2004: A convective vorticity vector associated with tropical convection: A 2D cloud-resolving modeling study,J. Geophys. Res., 109, D14106, doi:10.1029/2004JD004807.

89.   Chen, C. S., W.-C. Chen, andW.-K. Tao, 2004:A study of heavy summer rainfall over southwestern Taiwan,J. Meteor. Soc. Japan,82, 1521-1543

90.   Lang, S.,W.-K. Tao, J. Simpson, and B. Ferrier, 2004: Reply to ‘Comment on "Modeling of convective-stratiform precipitation processes: Sensitivity to partitioning methods" by M. Steiner’,J. Applied Meteor.43, 962-965.

91.   Matsui, T., H. Masunaga, R. Pielke, Sr. andW.-K. Tao, 2004: Impact of aerosol and atmospheric thermodynamics on cloud properties within the climate system,Geophys. Res. Letters, 31, L06109, doi10.1029/2003GL01928.

92.   Houser, P. R., M. Bosilovich, C. Peters-Lidard and W.-K. Tao, 2004: Ultra-high resolution observation-driven land modeling needed to enable the development of global cloud resolving Earth system models.  GEWEX News, 14, No. 3, 8-9.

93.   Li, X., C.-H. Sui, K.-M. Lau and W.-K. Tao, 2005: Tropical convective responses to microphysical and radiative processes: A sensitivity study with a 2D cloud resolving model,Meteor. Atmos. Phys.,doi:10.1007/s00703-004-0088-5.

94.   Zeng, X., W.-K. Taoand J. Simpson, 2005: An equation for moist entropy in a precipitating and ice atmosphere. J. Atmos. Sci.,62, 4293-4309.

95.   Li, J.-L. D. E. Waliser, J. H. Jiang, D. L. Wu, W. Read, J. W. Waters, A. Tompkins, L. J. Donner, J. Chern, W.-K. Tao, R. Atlas, Y. Gu, K.L. Liou, A. DelGenio, M. Khairoutdinov, and A. Gettelman, 2005: Comparisons of EOS MLS Cloud Ice Measurements with ECMWF analyses and GCM Simulations: Initial Results. Geophysical Research LettersVol. 32, No. 18, L18710, 10.1029/2005GL023788.

96.   Shie, C.-L., W.-K. Tao, J. Simpson, and C.-L. Sui, 2005: A note on the relationship between temperature and water vapor over oceans, as well as se surface temperature impact.  Adv. Atmos. Sci.,23, 141-148.

97.   Stenchikov, G., K. Pickering, A. Decaria, W.-K. Tao, J. Scala, L. Ott, D. Bartels and T. Matejka, 2005: Simulation of the fine structure of the July 12, 1996 STERAO storm accounting for effects of terrain and interaction with mesoscale flow.  J. GeophysRes.,110, D14304, doi:10.1029/2004JD005582.

98.   Gao, S., X. Cui, Y. Zhou, X. Li and W.-K. Tao, 2005: A modeling study of moist and dynamic vorticity vectors associated with two-dimensional tropical convection. J. Geophys. Res., 110, D17104, doi:10.1029/2004JD005675.

99.   Grabowski, W. W., P. Bechtold, A. Cheng, R. Forbes, G. Halliwell, M. Khairoutdinov, S. Lang, T. Nasuno, J. Petch, W.-KTao, R. Wong, X. Wu and K.-M. Xu, 2006: Daytime convective developments over land: An idealized model intercomparison case based on LBA observations, Q. J. Roy. Meteorl. Soc., 132, 317-344.

100.  Olson, W.-S., C. D. Kummerow,, S. Yang, G. W. Petty, W.-K. Tao, T. L. Bell, S. A. Braun, Y. Wang, S. E. Lang, D. E. Johnson and C. Chiu, 2006: Precipitation and latent heating distributions from satellite passive microwave radiometry Part I: Method and uncertainties. J. Applied Meteor., 45, 702-720.

101.  Tao, W.-K., E. Smith, R. Adler, Z. Haddad, A. Hou, T. Iguchi, R. Kakar, T.N. Krishnamurti, C. Kummerow, S. Lang, R. Meneghini, N. Nakamura, T. Nakazawa, K. Okamoto, W. Olson, S. Satoh, S. Shige, J. Simpson, Y. Takayabu, G. Tripoli, and S. Yang, 2006:  Retrieval of latent heating from TRMM measurements,Bull.Amer. Meteor. Soc.,87, 1555-1572.

102.  Matsui, T., H. Masunaga, R. A. Pielke, Sr., S. M. Kreidenweis, W.-K. Tao, M. Chin and Y. Kaufman, 2006: Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability and diurnal cycle. J. GeophyRes.,Aerosol and Clouds111, D17204, doi:10.1029/2005JD006097.

103.  Gao, S., X. Li, W.-K. Tao, C.-L. Shie and S. Lang, 2007: Convective moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation. J. GeophysRes.,112, D01105, doi:10.1029/2006JD007179.

104.  Alonge, C. J., K. I. Mohr, and W.-K. Tao, 2007: Numerical case studies of wet vs dry regimes in the West African Sahel, J. Hydrometeor.8, 102-116.

105.  Seo, E.-K., G. Liu, W.-K. Tao, and S.-O. Han, 2007: Adaptation of model-generated cloud database to satellite observations, GeophyResLett.34, doi:10.1029/2006GL027857.

106.  Fan, J., R. Zhang, G. Li, W.-K. Tao, X. Li, 2007: Simulations of cumulus clouds using a spectral bin microphysics in a cloud resolving model. J. GeophysRes112, D04201, doi:10.1029/2006JD007688.

107.  Lang, S., W.-K. Tao, R. Cifelli, W. Olson, J. Halverson, S. Rutledge, and J. Simpson, 2007: Improving simulations of convective system from TRMM LBA: Easterly and Westerly regimes. J. Atmos. Sci.,64, 1141-1164.

108.  Johnson, D., W.-K. Tao, and J. Simpson, 2007: A Study of the Response of Deep Tropical Clouds to Mesocale Processes, Part II: Sensitivity tests of radiation, surface fluxes and microphysics, J . Atmos. Sci.64, 869-886.

109.  Pielke, R., SrD. Stokowski, J. W. Wang, T. Vukicevic, G. Leoncini, T. Matsui, C. L. Castro, D. Niyogi, C. M. Kishtawal, A. Biazar, K. Doty, R. T. McNider, U. Nair, W.-K. Tao, 2007: Development of generalized parameterization of diabatic heating for use in weather and climate models, EOS88(8), 96-97.

110.  Juang, H. M., W.-K. Tao, X. Zeng, C.-L. Shie and J.  Simpson, 2007: Parallelization of a cloud-resolving model for massively parallel computing by using message passing interface,TAO18, 593-622.

111.  Shige, S., Y. N. Takayabu, W.-K. Taoand C.-L. Shie, 2007: Spectral retrieved of latent heating profiles from TRMM PR data.  Part II: Algorithm improvement and its estimates over the tropical ocean regions. J. Applied Meteor.Climatology,46, 1098-1124.

112.  Tao, W.-K.,R. Houze, Jr., and E. Smith, 2007: Summary of the 4thTRMM Latent Heating Workshop, Bull.Amer. Meteor. Soc., 88, 1255, 1259.

113.  Tao, W.-K.,2007: Cloud Resolving Modeling. J. Meteor. Soc. JapanSpecial Issue of 125thAnniversary of Japan Meteorology Society, 85, 305-330.

114.  Zeng, X., W.-K. Tao, M. Zhang, S. Lang, C. Peters-Lidard, J. Simpson, S. Xie, S. Kumar, J. V. Geiger,  C.-L. Shie, and J. L.. Eastman, 2007:  Evaluation of long-term cloud-resolving modeling with observational cloud data. J. Atmos. Sci., 644153–4177.

115.  Zhou, Y., W.-K. Tao, A.Hou, C.-L. Shie, K. -M. Lau, M. -D. Chou, X. Lin, B. Olson, M. Grecu, 2007: Using High-Resolution Satellite Observations for Evaluation of Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations. Part I: South China Sea Monsoon Experiment.  J. Atmos. Sci., 64,4309-4329.

116.  Fan, J., R. Zhang, G. Li, and W.-K. Tao, 2007: Effects of aerosols and relative humidity on cumulus clouds, J. GeophyRes., 112, D14204, doi:10.1029/2006JD008136.

117.  Tao, W.-K., X. Li, A. Khain, T. Matsui, S. Lang, and J. Simpson, 2007: The role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations. J. GeophysRes.,112, D24S18, doi:10.1029/2007JD008728.

118.  Kumar, S. V., C. D. Peters-Lidard, J. E. Eastman, W.-K. Tao, 2007: An integrated high resolution hydrometeorological modeling system using LIS and WRF, Environmental Modeling & Software,Vol 23/2,169-181.

119.  Shige, S., Y. N. Takayabu, and W.-K. Tao, 2008: Spectral retrieved of latent heating profiles from TRMM PR data. Part III: Moistening estimates over the tropical ocean regionsJ. Applied Meteor.Climatology,47, 620--640.

120.  Smith, E. A.,….W.-K. Tao, ….et al., 2007: International global precipitation measurement (GPM) program and mission: An overview, Advances in Global Change Research (Vol. 28), Springer, Dordrecht, NETHERLAND, 613-653.

121.  Fan, J., R. Zhang, W.-K. Tao, K. I. Mohr, 2008: Aerosol radiative effects on deep convective clouds and associated radiative forcing.  J. Geophys. Res.113,D08209, doi:10.1029/2007JD009257.

122.  Tao,W.-K.,R.A. Houze, Jr., and E. A. Smith, 2008: Retrieved Latent Heating from TRMM, GEWEX Newsletter18, No. 2, 8-9.

123.  Tao, W.-K., D. Anderson, R. Atlas, J. Chern, A. Hou, S. Lang, W. Lau, C. Peters-Lidard,  R. Kakar, S. Kumar, X. Li, T. Matsui, M. Rienecker, B.-W. Shen, J. J. Shi, J. Simpson, and X. Zeng, 2008: Goddard Multi-Scale Modeling Systems with Unified Physics,GEWEX Newsletter18, No. 1, 6-8.

124.  Li, J.-L. F., D. Waliser, C. Wood, J. Teixeira, J. Bacmeister, J. Chern, B.-W. Shen, A. Tompkins, W.-K. Tao, and M. Kohler, 2008: Comparisons of satellite liquid water estimates to ECMWF and GMAO analyses, 20thcentury IPCC AR4 climate simulations, and GCM simulations. Geophys. Res. Lett35, L19710, doi:10.1029/2088GL035427.

125.  Zeng, X., W.-K. Tao, S. Lang, A. Hou, M. Zhang, and J. Simpson, 2008: On the sensitivity of Atmospheric ensemble to cloud microphysics in long-term cloud-resolving model simulations. J. Meteor. Soc. JapanSpecial Issue on high-resolution cloud models,86A, 45-65.

126.  Zeng, X.,W.-K. Taoand J. Simpson, 2008: Microphysical timescales in clouds and their application in cloud-resolving model.J. Meteor. Soc. Japan,  86, No. 6,839-856.

127.  Norris, P. M., L. Oreopooulos, A. Hou, W.-K. Tao, and X. Zeng, 2008: Clouds andcopulas: Part I: Theory for water clouds,Q. J. Roy. Meteorl. Soc.,134, 1843-1864.

128.  Guo, H., Y. Liu, P. H. Daum and W.-K. Tao, 2008: Characteristics of vertical velocity in marine stratocumulus: Comparison of LES simulations with observations.  Environ. Res. Lett., 3, 045020, doi:10.1088/1748-9326/3/4/045020.

129.  Guo, H., Y. Liu, P. H. Daum, X. Zeng, X. Li and W.-K. Tao, 2008: Effects of model resolutions on entrainment (inversion heights), cloud-radiation interactions, and cloud radiative forcing. Atmos. Chem. Phys. Discuss8, 20399–20425. 

130.  Li, X., W.-K. Tao, A. Khain, J. Simpson and D. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit-bin microphysics schemes: Part I: Comparisons.  J. Atmos. Sci., 66, 3-21.

131.  Li, X., W.-K. Tao, A. Khain, J. Simpson and D. Johnson, 2009: Sensitivity of a cloud-resolving model to bulk and explicit-bin microphysics schemes: Part II: Cloud microphysics and storm dynamics interactions.  J. Atmos. Sci., 66, 22-40.

132.  Tao, W.-K., J. Chern, R. Atlas, D. Randall, X. Lin, M. Khairoutdinov, J._L. Li, D. E. Waliser, A. Hou, C. Peters-Lidard, W. Lau, and J. Simpson, 2009: Multi-scale modeling system: Development, applications and critical issues, Bull.Amer. Meteor. Soc.90515-534.

133.  Zeng, X., W.-K. Tao, M. Zhang, A. Y. Hou, S. Xie, S. Lang, X. Li, D. Starr, X. Li, and J. Simpson, 2009: The indirect effect of ice nuclei on atmospheric radiation. J.  Atmos. Sci., 66, 41-61.

134.   Wang, D., X. Li, W.-K. Tao, Y. Liu and H. Zhou, 2009: Torrential rainfall processes associated with a landfall of severe tropical storm Bills (2006): A cloud-resolving modeling study. Atmos. Res., 91, 94-104.

135.  Wang D., X. Li, and W.–K. Tao, et al., 2009: Effects of vertical wind shear on convective development during a landfall of severe tropical storm Bilis (2006),Atmos. Res., 94, 270-275.

136.  Matsui, T., X. Zeng, W.-K. Tao, H. Masunaga, W. S. Olson, and S. Lang, 2009: Evaluation of long-term cloud-resolving model simulations using satellite radiance observations and multi-frequency satellite simulators. J. Atmos. Oce. Tech26, 1261-1274. doi.org/10.1175/2008JTECHA1168.1

137.  Waliser, D., F. Li, C. Woods, J. Bacmeister, J. Chern, A. Del Genio, J. Jiang, M. Kharitondov, Z. Kuang, H. Meng, P. Minnis, S. Platnik, W. B. Rossow, G. Stephens, S. Sun-Mack, W.-K. Tao, A. Tommpkins, D. Vane, C. Walker and D. Wu, 2009: Cloud ice: A climate model challenge woth signs and expectations of progress.  J. Geophys. Res. 114, D00A21, doi:10.1029/2008JD010015.

138.  Jiang, X., D. Waliser, J.-L. Li, B. Tian, W. Olson, M. Grecu, W.-K. Tao, S. Lang, A. Tompkins, and T. L’Ecuyer, 2009: Characterizing the vertical heating structure of the MJO using TRMM. J. Climate,22, 6001-6020.

139.  Tao, W.-K., D. Anderson, J. Chern, J. Estin, A. Hou, P. Houser, R. Kakar, S. Lang, W. Lau, C. Peters-Lidard, X. Li, T. Matsui, B.-W. Shen, J.-J. Shi, and X. Zeng, 2009: Goddard Multi-Scale Modeling Systems with Unified Physics,Annales Geophysics,27, 3055-3064.

140.  Grecu, M. W. Olson, C.-L. Shie, T. L’Ecuyer, and W.-K. Tao, 2009: Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Latent Heating Profiles. J.  Climate22, 6356-6376.

141.  Shige, S., Y. N. Takayabu, S. Kida, W.-K. Tao, X. Zeng and T. L’Ecuyer, 2009: Spectral retrieved of latent heating profiles from TRMM PR data.  Part VI: Comparisons of lookup tables from two- and three-dimensional simulations. J. Climate,22, 5577-5594.

142.  Zeng, X.,W.-K. Tao, M.-H. Zhang, A. Y. Hou, S. Xie, S. Lang, X. Li, D. O’C Starr and X. Li, 2009: A contribution by ice nuclei to global warming.Quart. J. Roy. Meteor. Soc.,135, 1614-1629.

143.  Santanello, J. A. Jr, C. D. Peters-Lidard, S. V. Kummar, C. Alonge, and W.-K. Tao, 2009: A modeling and observational framework for diagnosing local land-atmosphere coupling on diurnal time scales. J. of Hydrometeo10, 577-599.

144.  Lee, M.-I., I. Choi, W.-K. Tao, S. D. Schubert, and I.-K. Kang, 2010: Mechanisms of diurnal precipitation over the United States Great Plains: A cloud-resolving model simulation. Climate Dynamic,34, 419-437.

145.  Shen, B.-W. and W.-K. Tao, W. K.-K. Lau, R. Atlas, 2010: Predicting the Formation of Tropical Cyclone Nargis (2008) with a High-resolution Global Model. Geophys. Res. Lettersdoi:10.1029/2009JD013140.

146.  Shen, B.-W. W.-K. Tao, and M.-L. C. Wu, 2010: African Easterly Waves in 30-day High-resolution Global Simulations: A Case Study during the 2006 NAMMA Period. Geophys. Res. Lett.,L18803, doi:10.1029/2010GL044355.

147.  Hagos, S. C. Zhang, W.-K. Tao, S. Lang, Y. Takayabu, S. Shige, and M. Katsumata. 2010: Latent Heating Profiles over the Tropics: Estimates and Uncertainties.J. Climate,23, 542-558.

148.  Tao, W.-K.,S. Lang, X. Zeng, S. Shige, Y. Takayabu, 2010: Relating convective and stratiform rain to latent heating, J. Climate, 23, 1874-1893.  

149.  Wang D., X. Li, and W.–K. Tao, 2010: Responses of vertical structures in convective and stratiform regions to large-scale forcing during the landfall of severe tropical storm Bilis (2006), Advances in Atmospheric Sciences27, No.1, 1-14.

150.  Shi, J. J., W.-K. Tao, T. Matsui, A. Hou, S. Lang, C. Peters-Lidard, G. Jackson, R. Cifelli, S. Rutledge, and W. Petersen, 2010: Microphysical Properties of the January 20-22 2007 Snow Events over Canada: Comparison with in-situ and Satellite Observations. J. Applied Meteor.Climatol., 49, 2246-2266.

151.  Takayabu, Y. N., S. Shige, W.-K. Taoand N. Hirota, 2010: Shallow and deep latent heating modes over tropical oceans observed with TRMM PR spectral latent heating data. J. Climate, 23, 2030-2046.

152.  Li, X., W.-K. Tao, T. Matsui, C. Liu and H. Masunaga, 2010: Improving spectral bin microphysical scheme using TRMM satellite observations. Quart. J. Roy. Meteor. Soc., 136, 382–399.

153.  Ott, L. E., K. E. Pickering, G. L. Stenchikov, D. J. Allen, A. J. DeCaria, B. Rodley, R.-F. Lin, S. Lang and W.-K. Tao, 2010: Production of lightning NOx and its vertical distribution calculated from three-dimensional cloud-scale chemical transport model simulations. J. Geophys. Res., 115, D04301, doi:10.1029/2009JD011880.

154.  Matsui, T., D. Mocko, M.-I. Lee, J. Chern and W.-K. Tao, 2010: Ten-year climatology of summertime diurnal rainfall rate over the Conterminous U.S., Geophys. Res. LetterVol. 37, L13807, doi:10.1029/2010GL044139.

155.  Wang, D., X. Li, W.-K Tao, 2010: Cloud radiative effects on responses of rainfall to large-scale forcing during a landfall of severe tropical storm Bilis (2006).  Atmos. Res., doi:10.1016/j.atmosres.2010.08.020.

156.  Wang, D., X. Li, W.-K Tao, 2010:Torrential rainfall responses to radiative and microphysical processes of ice clouds during a landfall of severe tropical storm Bilis (2006). Meteorol Atmos Phys., doi 10.1007/s00703-010-0097-5.

157.  Masunaga, H., Matsui, T., W.-K. Tao, A. Y. Hou, C. Kummerow, T. Nakajima, P. Bauer, W. Olson, M. Sekiguchi, and T. Y. Nakajima, 2010: Satellite Data Simulation Unit: Multi-Sensor and Multi–Frequency Satellite Simulator package, Bulletin of American Meteorological Society91, 1625-1632.

158.  Zhang, C., S. Hagos, W.-K. Tao, S. Lang, Y. N. Takayabu, S. Shige, M. Katsumata, W. S. Olson, and T. L’Ecuyer, 2010: MJO signals in latent heating: TRMM observations. J. Atmos. Sci., 67, 3488-3508.

159.  Tao, W.-K., J. J. Shi, S. S. Chen, S. Lang, P.-L. Lin, S.-Y. Hong, C. Perters-Lidard and A. Hou, 2010: The impact of microphysics on intensity and track of hurricane. Special Issue on MCSs and High-Impact Weather/Climate in East Asia, Asia-Pacific Journal of Atmospheric Sciences (APJAS)47, 1-16.

160.  Zeng, X., W.-K. Tao, T. Matsui, S. Xie, S. Lang, M. Zhang, D. Starr, and X. Li, 2010: Estimating the Ice Crystal Enhancement Factor in the Tropics. J. Atmos. Sci.,68, 1424-1434.

161.  Chen, W.-T., C. P. Woods, J.-L. F. Li, D. E. Waliser, J.-D. Chern, W.-K. Tao, J. H. Jiang, and A. M. Tompkins, 2011: Partitioning CloudSat ice water content for comparison with upper tropospheric ice in global atmospheric models, J. Geophys. Res.,116, D19206, doi:10.1029/2010JD015179.

162.  Shen, B.-W., Wei-Kuo Tao, Bryan Green, 2011: Coupling Advanced Modeling and Visualization to Improve High-Impact Tropical Weather Prediction, Computing in Science and Engineering, Vol. 13, no. 5, pp. 56-67, Sep./Oct. 2011, doi:10.1109/MCSE.2010.141

163.  Iguchi, T., T. Nakajima, A. P. Khain, K. Saito, T. Takemura, H. Okamoto, T. Nishizawa, and W.-K. Tao, 2011: Evaluationof cloud microphysics simulated using a meso-scale model coupled with a  spectral bin microphysical scheme through comparison with observation data by ship-borne Doppler and space-borne W-band radars, J. Atmos. Sci., 69, 2566-2586, DOI: 10.1175/JAS-D-11-0213.1.

164.  Jiang, X., D. E. Waliser, W. S. Olson, W.-K. Tao, T. S. L’Ecuyer, S. Shige, K.-F. Li, Y. L. Yung, and S. Lang, 2011: Vertical diabatic heating structure of the MJO: Inter-comparison between recent reanalyses and TRMM estimates, Mon. Wea. Rev.,139, 3208–3223.

165.  Lang, S., W.-K. Taoand X. Zeng, 2011: Reducing the biases in simulated radar reflectivities from a bulk microphysics scheme: Tropical convective systems, J. Atmos. Sci., 68, 2306-2320.

166.  Tao, W.-K., J. J. Shi, P.-L. Lin, M.-Y. Chang, M.-J. Yang, C. Peter-Liddard, C.-H. Sui, 2011: High Resolution Numerical Simulation of Typhoon Morakot: Part I:  Impact of Microphysics and PBL. Special Issue on Typhoon MorakotTerrestrial, Atmospheric and Oceanic Sciences, Vol.22, No. 6,  673-696. doi.10.3319/TAO2011.08.26.01™.

167.  Mohr, K. I., W.-K. Tao, J. Chern, S. V. Kumar, and C.Peters-Lidard, 2013:The NASA-Goddard Multi-scale Modeling Framework-Land Information System: Global land/atmosphere interaction with resolved convection. Environmental Modeling & Software39, 103-115, http://dx.doi.org/10.1016/j.bbr.2011.03.031.

168.  Tao, W.-K., D. Wu, T. Matsui, S. Lang, C. Peters-Lidard, A. Hou, M. RieneckerW. Petersen and M. Jensen, 2013: The Diurnal Variation of Precipitation: A numerical modeling study, J. Geophys. Res.,118, 7199–7218, doi:10.1002/jgrd.50410. http://onlinelibrary.wiley.com/doi/10.1002/jgrd.50410/abstract.

169.  Tapiador, F. J., W.-K. Tao, R. Shi, C. F. Angelis, M. A. Martinez, C, Marcos, A. Rodriguez, and A. Hou, 2012: Comparison of cloud microphysics, land-surface physics and cumulus parameterizations in a severe weather episode in Spain. J. Applied Meteor. Climato.51, 489-504.

170.  Shen, B.-W., W.-K. Tao, Y.-L. Lin, and A. Laing, 2012: Genesis of Twin Tropical Cyclones as Revealed by a Global Mesoscale Model: The Role of Mixed Rossby Gravity Waves. J. Geophys. Res.117, D13114, doi:10.1029/2012JD017450. 

171.  Shen, B.-W., W.-K. Tao, Y.-L. Lin, and A. Laing, 2012a-1: Correction to:"Genesis of twin tropical cyclones as revealed by a global mesoscale model: The role of mixed Rossby gravity waves" J. Geophys. Res., 117, D16199, doi:10.1029/2012JD018598.

172.  Shen, B.-W., B. Nelson, S. Cheung, W.-K. Tao, 2013: Scalability Improvement of the NASA Multiscale Modeling Framework for Tropical Cyclone Climate Study. Computing in Science and Engineering, IEEE Computer Society Digital Library. IEEE Computer Society, 15, no. 5, pp. 56-67doi:10.1109/MCSE.2012.90

173.  Shen, B.-W., B. Nelson, W.-K. Tao, and Y.-L. Lin, 2013: Advanced Visualizations of Scale Interactions of Tropical Cyclone Formation and Tropical Waves. Computing in Science and Engineering, IEEE computer Society Digital Library. IEEE Computer Society, http://doi.ieeecomputersociety.org/10.1109/MCSE.2012.64http://www.computer.org/csdl/mags/cs/preprint/mcs2012990126-abs.html 

174.  Zeng, X., W.-K. Tao, S. Powell, R. Houze, Jr., P. Ciesielski, N. Guy, H. Pierce and T. Matsui, 2013: Comparison of Water Budget between AMMA and TWP-ICE Clouds. J. Atmos. Sci.70, 487-503.

175.  Nick Guy, X. Zeng, S. A. Rutledge, and W.-K. Tao, 2012: Goddard cumulus ensemble model performance on Sahelian mesoscale convective systems. Mon. Wea. Rev.141,582-601.

176.  Shi, J. J., T. Matsui, W.-K. Tao,C. Peters-Lidard, M. Chin, Q. Tan, K. Pickering, and E. Kemp., 2013: Implementation of an Aerosol-Cloud Microphysics-Radiation Coupling into the NASA Unified WRF:  Simulation Results for the 6-7 August 2006 AMMA Special Observing Period. Quart. J. Roy. Meteor. Soc.140, 2158-2175. doi: 10.1002/qj.2286.

177.  Iguchi, T.,T.Matsui, J.-J. Shi, W.-K. Tao,A. P. Khain, A. Hou, R. Cifelli, A. Heymsfield, and A. Tokay,  2012:Numerical analysis using WRF-SBM for the cloud microphysical structures of the two distinct snowfall events during the C3VP field campaign, J. Geophys. Res., 117, D23206, doi:10.1029/2012JD018101.

178.  Matsui, T., T. Iguchi, X.Li, M. Han, W.-K. Tao, W. Petersen, T. LeCuyer, A. Hou, M. Schwaller, E. Stocker, 2013:  GPM satellite simulator upon Ground Validation sites, Bull. Amer. Meteor. Soc.94, 1653–1660. doi: http://dx.doi.org/10.1175/BAMS-D-12-00160.1.

179.  Wu, D., X. Dong, B. Xi, Z. Feng, A. Kennedy, G. Mullendore, M. Gilmore, and W.-K. Tao, 2013: The Impact of Various WRF Single-Moment Microphysics Parameterizations on Squall Line Precipitation, J. Geophys. Res., 118, doi:10.1002/jgrd.50798. https://dl.dropboxusercontent.com/u/13166966/JGRD50798.pdf.

180.  Iguchi, T., T. Matsui, A. Tokay, P. Kollias, and W.-K. Tao, 2012: Two distinct modes in one-day rainfall event during MC3E field campaign: Analysis of disdrometer observations and WRF-SBM simulation, Geophys. Res. Lett.,39, L24805, doi:10.1029/2012GL053329.

181.  Li, X., W.-K. Tao, H. Masunaga, G. Gu, and X. Zeng, 2013: Aerosol Effects on Cumulus Congestus Population over the Tropical Pacific: A Cloud-Resolving Modeling Study. J. Meteor. Soc. Japan,91(6),817-833. http://dx.doi.org/10.2151/jmsj.2013-607

182.  Nicholls, S. D., S. G. Decker, W.-K. Tao, S.E. Lang, J.J. Shi, and K.I. Mohr, 2013: Influence of microphysics schemes upon WRF 3.3 simulations of Nor'easters, Mon. Wea. Rev.,141, 582-601.

183.  Tao, W.-K., S. Lang, X. Zeng, X. Li, T. Matsui, K. Mohr, D. Posselt, J. Chern, P. Norris, I.-S. Kang, A. Hou, K.-M. Lau, I. Choi, and M. Yang, 2014: The Goddard Cumulus Ensemble (GCE) Model: Improvements and Applications for Studying Precipitation Processes.  An invited paper - Atmos. Res.,doi:10.1016/j.atmosres.2014.03.005

184.  Iguchi, T., T. Matsui, W.-K. Tao, A. Khain, V. T. J. Phillips, C. Kidd, T. L’Ecuyer, S. A. Braun, A. Hou, and M. R. Schwaller, 2014: Numerical simulations using WRF-SBM for mixed-phase precipitation and consequent bright band structure observed in the LPVEx field campaignJ. Appl. Meteor. Climatol.53, 2710-2731, doi:10.1175/JAMC-D-13-0334.1

185.  Wang, C., Z. J. Luo, X. Chen, X. Zeng, W.-K. Taoand X. Huang, 2014: A physically based algorithm for non-blackbody correction of cloud top temperature and application to convection study. J. Applied Meteor.Climatol.53, 1844–1857. doi: http://dx.doi.org/10.1175/JAMC-D-13-0331.1

186.  Lang, S., W.-K. Tao, J.-D. Chern, D. Wu, and X. Li, 2014:  Benefits of a 4thice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme, J. Atmos. Sci.,71, 3583-3612.

       doi: http://dx.doi.org/10.1175/JAS-D-13-0330.1

187.  Lee, S.-S., W.-K. Taoand C.-H. Jung, 2013: Aerosol effects on instability, circulations, clouds and precipitation. Advances in Meteorology. Vol. 2014, Article ID 683950, 8 pages, 2014. doi:10.1155/2014/683950.

188.  Kang, I.-S., Y.-M. Yang and W.-K. Tao, 2014: GCMs with implicit and explicit representation of cloud microphysics for simulation of extreme precipitation frequency. Climate Dynamics,DOI 10.1007/s00382-014-2376-1

189.  Tao, W.-K., and X. Li, 2016: The relationship between latent heating, vertical velocity, and precipitation processes:  The impact of aerosols J. Geophys. Res.,121, doi:10.1002/2015JD024267.

190.  Matsui, T., J. Santanello, J. J. Shi, W.-K. Tao, D. Wu, C. Peters-Lidard, E. Kemp, M. Chin, D. Starr, M. Sekiguchi, and F. Aires, 2014: Multi-Sensor Satellite Radiance-based Evaluation for Regional Earth System Modeling,  J. Geophys. Res.119, doi:10.1002/2013JD021424.

191.  Peters-Lidard, C.D., E. M. Kemp, T. Matsui, J. A. Santanello, Jr., S. V., Kumar, J. Jacob, T. Clune, W.-K. Tao, M. Chin, A. Hou, J. L. Case,, D. Kim, K.-M. Kim, W. Lau, Y. Liu, J.-J. Shi, D. Starr, Q. Tan,, Z. Tao, B. Zaitchik, B. Zavodsky, S. Zhang, M. Zupanski, 2014: Integrated Modeling of Aerosol, Cloud, Precipitation and Land Processes at Satellite-Resolved Scales with the NASA Unified-Weather Research and Forecasting Model, Environmental Modeling & Software67, 149–159.  doi: http://dx.doi.org/10.1016/j.envsoft.2015.01.007

192.  Matsui, T., W.-K. Tao, S. J. Munchack, G. Huffman, and M. Grecu, 2015: Satellite View of Quasi-Equilibrium States in Tropical Convection and Precipitation Microphysics, Geophys. Res. Lett.42, doi:10.1002/2015GL063261

193.  Tao, W.-K., D. Wu, S. Lang, J. Chern, A. Fridlind, C. Peters-Lidard, and T. Matsui, 2016: High-resolution model simulations of MC3E, deep convective-precipitation systems: Comparisons between Goddard microphysics schemes and observations, J. Geophys. Res.,121, 1278-1306.  doi:10.1002/2015JD023986.

194.  Chern, J.-D., W.-K. Tao, S.E.Lang, J.-L. F. Li, K. I. Mohr, G. M. Skofronick-Jackson, and C. D. Peters-Lidard, 2016: Performance of the Goddard Multiscale Modeling Framework with Goddard microphysical schemes. J. Adv. Model. Earth Syst. (7), doi:10.1002/2015MS000469

195.   Matsui, T., J. Chern, W.-K. Tao, S. Lang, M. Satoh, T. Hashino, and T. Kubota, 2016: Land-Ocean Contrast of Tropical Cloud-Precipitation Signals Derived from the TRMM Satellite and Global Storm-Resolving Models, J. Hydrometeo.,17, 1425-1445, doi:10.1175/JHM-D-15-0111.1.

196.   Wu, D., C. Peters-Lidard, W.-K. Tao, and W. Petersen, 2016: Evaluation of NU-WRF real-time rainfall forecast for IFloodS, J. Hydrometeor., Doi:10.1175/JHM-D-15-0134.1.

197.   Lau, W. K., J. J. Shi, W.-K. Tao, and K. M. Kim, 2016: What Would Happen to Superstorm Sandy under the Influence of a Substantially Warmer Atlantic Sea Surface Temperature? Geophys. Res. Letters. Vol. 43, Issue 2, 802-811, doi:10.1002/2015GL067050.

198.   Zhou, Y., Di Wu, K.-M. Lau and W.-K. Tao, 2016, Scale Dependence of Land Atmospheric Interactions in Wet and Dry Regions as Simulated with NU-WRF over Southwest and Southeast US. J. Hydrometeor., doi: 10.1175/JHM-D-16-0024.1.

199.   Nicholls, S. D., S. G. Decker, W.-K. Tao, S. E. Lang, J. J. Shi, and K. I. Mohr, 2017: Influence of microphysics schemes upon WRF 3.6.1 simulations of Nor'easters, Geosci. Model Dev., 10, 1033-1049, doi:10.5194/gmd-10-1033-2017. 

200.   Tao, W.-K., and J. Chern, 2017: The impact of mesoscale convective systems on global precipitation: A modeling study, J. Adv. Model. Earth Syst., doi:10.1002/2016MS000836

201.   Loftus, A. M., S.-C. Tsay, W.-K. Tao, P. Pantina, C. Nguyen, P. M. Gabriel, A. X. Nguyen, A. M. Sayer, and T. Matsui, 2016: Coupled Aerosol-Cloud Systems over Northern Vietnam during 7-SEAS/BASELInE: A Radar and Modeling Perspective.Aerosol Air Qual. Res.,doi:10.4209/aaqr/2015.11.0631

202.   Iguchi, T., W.-K. Tao, et al. 2017: Sensitivity of CONUS summer rainfall to the selection of cumulus parameterization scheme in NU-WRF climate simulations.  J. Hydrometeor., 18, 1689–1706, doi: 10.1175/JHM-D-16-0120.1.

203.   Lau, W. K., K.-M. Kim, J. J. Shi, T.  Matsui, M. Chin, Q. Tan, C. Peters-Lidard, and W.-K. Tao, 2016: Impacts of aerosol-monsoon interaction on rainfall and circulation over Northern India and the Himalayan Foothills. Climate Dynamics,doi: 10.1007/s00382-016-3430-y.

204.   Fridlind, A. M., X. Li, D. Wu, M. van Lier-Walqui. A. S. Ackerman, W.-K. Tao, et al., 2017: Use of observation-based aerosol profiles km simulations of a mid-latitude squall line during MC3E: Similarity of microphysics regime to tropical conditions. Atmos. Chem. Phys17,5947-5972, doi:10.5194/acp-17-5947-2017.

205.   Tsay, S.-C., .. .. W.-K Tao, et al., 2016: Satellite-surface perspectivesof air quality and aerosol-cloud effects on the environment:  An overview of 7-SEAS/BASELInE., Aerosol and Air Quality Research Special Issue on Aerosol Impact on Physical, Chemical and Biological Processes in Southeast Asia and the Maritime Continent. 16, 2581–2602, 10.4209/aaqr.2016.08.0350.

206.   Tapiador, F.J., A. Navarro, V. Levizzani, E. García-Ortega, G.J. Huffman, C. Kidd, P.A. Kucera, C.D. Kummerow, H. Masunaga, W.A. Petersen, R. Roca, J.-L. Sánchez, W.-K. Tao, F. J. Turk, 2017:  Global Precipitation Measurements for Validating Climate Models.  Atmos. Res.,197. 1–20. doi: 10.1016/j.atmosres.2017.06.021

207.   Lang, E. S., and W.-K. Tao, 2018: The Next-generation Goddard Convective-Stratiform Heating Algorithm: New Tropical and Warm Season Retrievals for GPM. J. ClimateV31, No 5, doi: 10.1175/JCLI-D-17-0224.1.

208.   Li, X., M. Janiga, S. Wang, W.-K. Tao, A. Rowe, W. Xu, C. Liu, T. Matsui, and C. Zhang, 2018: Precipitation structure evolution during November DYNAMO MJO event: Cloud-resolution simulations and comparison with multiple radar observations.  J. Geophys. Res., 123https://doi.org/10.1002/2017JD027775

209.   Matsui, T., S. Q. Zhang, W.-K. Tao, S. Lang, C. Ichoku, and C. Peters-Lidard, 2018: Impact of Radiation Frequency, Precipitation Radiative Forcing, and Radiation Column Aggregation on Convection-Permitting West African Monsoon Simulations, Climate Dynamics, doi: 10.1007/s00382-018-4187-2.

210.   Matsui, T., B. Dolan, S. A. Rutledge, W.-K. Tao, T. Iguchi, J. Barnum and S. Lang, 2019: Polarris APOLArimetric Radar Retrieval and Instrument Simulators, J. Geophys. Res., (accepted).

211.   Bae, S. Y., S.-Y Hong and W.-K. Tao, 2019: Development of the single-moment cloud microphysics scheme with prognostic hail for Weather Research Forecasting model, Asia-Pacific J. Atmos. Sci.,(in press).

212.  Tao, W.-K., T. Iguchi, and S. Lang, 2019: Expending the Goddard CSH Algorithm for GPM: New Extra-tropical Retrievals.  J. Applied Meteor. Climatol58, 921-946, doi: 10.1175/JAMC-D-18-0215.1

213.  Lau, W. K. M., K.-M. Kim, J.-D. Chern, W.-K. Tao and R. L. Leung, 2019: Structural changes and variability of the ITCZ induced by radiation-cloud-convection-circulation interactions:  Inferences from the Goddard Multi-scale Modeling Framework (GMMF) experiments. Climate Dynamic, https://doi.org/10.1007/s00382-019-05000-y.




1.   Adler, R., N. Prasad, W.-K. Tao, H.-Y. Yeh, R. Mack and J. Simpson, 1988: Microwave observations and modeling of deep convection, In Tropical Rainfall Measurements, A. Deepak Publishing, 185-191. 

2.   Tao, W.-K., and J. Simpson, 1988: Precipitation statistics using model output, WMO/WCRP-1, Validation of Satellite Precipitation Measurements for the global Precipitation Climatology Project, Ed.  J. C. Wilkerson, 217-226.

3.  Pickering, K. E., A. M. Thompson, J. R. Scala, W.-K. Tao and J. Simpson, 1994: Enhancement of free tropospheric ozone production by deep convection, Ozone in the Troposphere and Stratosphere, Ed. R. D. Hudson, 105-108. 

4.  Tao, W.-K., 1995: Interaction of parameterized convection and explicit stratiform cloud microphysics, WMO/WCRP-90, Cloud Microphysics Parameterizations in Global Atmospheric General Circulation Models, Ed. D. Randall, 199-210.

5.    Tao, W.-K., J. Simpson and B. Ferrier, 1997: Cloud Resolving Model Simulations of Mesoscale Convective Systems,  New Insights and Approaches to Convective Parameterization , Ed. D. Gregory, 77-112.

6.    Tao, W.-K., Y. Jia, C.-H. Sui and C. Chen "The diurnal cycle in TOGA-COARE: 1998: Regional scale model simulations, WMO/Would Climate Research Program-107, COARE 98, Ed. F. Bradley and R. Lukas, 321-322.

7.    Tao, W.-K., D. Johnson and J. Simpson, 1998: Tropical oceanic precipitation processes over the warm pool: 2D and 3D cloud resolving model  simulations. WMO/Would Climate Research Program-107, COARE 98, Ed. F. Bradley and R. Lukas, 197-198.

8.    Johnson, D., W.-K. Tao, C-H. Sui and J. Simpson, 1998: A study of the response of deep tropical clouds to large-scale processes. WMO/Would Climate Research Program-107COARE 98, Ed. F. Bradley and R. Lukas, 407-408.

9.    Moncrieff, M. W., and W.-K. Tao, 1999: Cloud-resolving  models, Global Water and Energy Cycles, Ed. by K. Browing and R. J. Gurney, Cambridge University Press, 200-209. 

10. Redelsperger, J., L., S. Chen, R. H. Johnson, M. A. LeMone, T. Nakazawa, D. B. Parsons, S. A. Rutledege, W.-K. Tao and M.  Yanai, 2000: Review of convection in TOGA COARE, World Meteorology Organization Monograph, WCRP-107, 16-42. 

11. Tao, W.-K., 2003: Goddard Cumulus Ensemble (GCE) model: Application for understanding precipitation processes, AMS Meteorological Monographs - Cloud Systems, Hurricanes and TRMM.  107-138.

12.  TaoW.-K., J. Halverson, R. Adler, M. Garstang, R. Houze, Jr., M. LeMone, R. Pielke and W. Woodley, 2003: The Research of Dr. Joanne Simpson: Fifty Years Investigating Hurricanes, Tropical Clouds and Cloud Systems" AMS Meteorological Monographs - Cloud Systems, Hurricanes and TRMM.  1-16.

13. Tao, W.-K., and M. Moncrieff, 2003: Cloud Modeling, Encyclopedia of Atmospheric Sciences, Edited by J. Holton, J. Curry and J. Pyle, 539-548. 

14.  Tao, W.-K., Y. Wang, J. Qian, W. K.-M. Lau, C.-L. Shie and R. Kakar, 2003: Mesoscale Convective Systems during SCSMEX: Simulations with a Regional Climate Model and a Cloud-Resolving Model, Weather and climate Modeling, New Age International (P) Limited, Edited by S.V. Singh, S. Basu and T. N. Krishnamurti, 77-92.

15.   Tao, W.-K., R. Adler, D. Baker, S. Braun, M.-D. Chou, M. F. Jasinski, Y. Jia, R. Kakar, M. Karyampudi, W. K.-M. Lau, B. Lynn, Z.-X. Pu, M. Shepherd, C.-L. Shie, D. Starr, Y. Wang, W. Weinman and P. Wetzel, 2003: Regional Scale Modeling at NASA Goddard Space Flight Center, Recent Research Developments in Atmospheric Science, Research Signpost, 2, 1-52.

16.  Tao, W.-K., S. Lang, W. Olson, S. Satoh, S. Shige, Y. Takayabu, and S. Yang, 2004: Heating structure derived from TRMM, Japan Aerospace Exploration Agency, Earth Observation Research and Application Center, 18-40.

17.  Shen, B.-W., R. Atlas, W.-K. Tao, T. Lee, O. Reale, J.-D. Chern, S.-J. Lin, J. Chang, C. Henze, J.-L. Li, 2006: Experimental High-Resolution Weather/Hurricane Predictions with the NASA fvGCM. High-End Computing at NASA48-49.

18. Tao, W.-K., and A. Hou, 2006: Applications, evaluation, and improvement of multi-scale modeling systems, High-end computing at NASA, 40-41.

19.  Sui, C.-H., X. Li, K.-M. Lau, W.-K. Tao, M.-D. Chou and M.-J. Yang, 2008: Convective-radiative-mixing processes in the Tropical Ocean-Atmosphere.  Recent Progress in Atmospheric Sciences with Applications to the Asia-Pacific Region, World Scientific Publication 66-88.

20.  Quaas, J., S. Bony, W. Collins, L. Donner, A. Illingworth, A. Jones, U. Lohmann, M. Satoh, S. E. Schwartz, W.-K. Tao, and R. Wood, 2008: Current Understanding and Quantification of Clouds in the Changing Climate System and Strategies for Reducing Critical Uncertainties, MIT book. Chapter 24, 557-573.

21. Tao, W.-K., and M. Moncrieff, 2009: Multi-scale cloud-system modeling. Rev. Geophys., 47, RG4002, doi:10.1029/2008RG000276.

22.  Tao, W.-K., J. J. Shi, T. Matsui, A. Hou, S. Lang, C. Peters-Lidard, G. Skofronick-Jackson, W. Petersen, R. Cifelli, and S. Rutledge, 2009: The 20-22 January 2007 Snow Events over Canada:  Microphysical Properties, Proceeding of the International Precipitation Group Workshop, 340-349.

23.  Tao, W.-K., J.-P. Chen, Z.-Q. Li, C. Wang and C.-D. Zhang, 2012: The Impact of Aerosol on convective cloud and precipitation. Rev. Geophys., doi:10.1029/2011RG000369. 


24. Tao, W.-K., and M. Moncrieff, 2015: Cloud Modeling, In: Gerald R. North (editor-in-chief), John Pyle and Fuqing Zhang (editors). Encyclopedia of Atmospheric Sciences, 2nd edition, Vol 2, pp.112-120.

25. Tao, W.-K., and Toshi Matsui, 2015: Cloud System Modeling and Aerosol, In: Gerald R. North (editor-in-chief), John Pyle and Fuqing Zhang (editors). Encyclopedia of Atmospheric Sciences, 2nd edition, Vol 2, p. p222-231.

26.   Tao, W.-K., Y. N.Takayabu, S. Lang, W. Olson, S. Shige, A.Hou, X. Jiang, W. Lau, T. Krishnamurti, D. Waliser, C. Zhang, R. Johnson, R. Houze, P. Ciesielski, M. Grecu, S. Hagos, R. Kakar, N. Nakamura, S. Braun, and A. Bhardwaj, 2016: TRMM Latent Heating Retrieval and Comparison with Field Campaigns and Large-Scale Analyses, Amer. Meteor. Soc. Meteorological Monographs - Multi-scale Convection-Coupled Systems in the Tropics, Chapter 2, doi:10.1175/AMSMONOGRAPHS-D-15-0013.1

27.   Tao, W.-K., J. Chern, T. Iguchi, S. Lang, M.-J. Lee, X. Li, A. Loftus, T. Matsui, K. Mohr, S. Nicholls, C. Peters-Lidar, D. Posselt, and G. Skofronick-Jackson, 2019: Microphysics in Goddard Multi-scale Modeling Systems. “Current trend in the Representation of Physical Processes in Weather and Climate Models” by Springer Nature, 253-316 (2 February 2019).  https://www.dropbox.com/s/fdd0o7ovhh9j40d/indiaFV1.pdf?dl=0

28.   Takayabu, Y. N., and W.-K. Tao, 2019: Latent heating retrievals from satellite observations. Chapter 5.12 in Satellite Precipitation Measurement, Springer (accepted).




Invited Talks in 2016-2018



(1)        July 30, AOGS19, Singapore
Goddard Microphysics: Status and Evaluation
(2)        September 24, Kyoto University, Kyoto, Japan
Impact of mesoscale convective systems (MCSs) on precipitation: Modeling studies 
(3)        November 4, NASA PMM Science Team Meeting, Indianapolis, IN
Goddard Latent Heating (LH) Retrieval Algorithm
(4)        November 12, Korea Institute of Atmospheric Prediction Systems (KIAPS) International Symposium on the Global NWP System Modeling, Seoul, S. Korea (paid by host)
Utilize Polarimetric Radar to assess the performance of WRF SBM and 4ICE Simulations of Deep Convective Systems
(5)        November 26, Prediction Skill of extreme Precipitation events and Tropical Cyclones: Present status and future Prospects, Pune, India (paid by host)
Goddard Mesoscale Model Simulations of Impact Weather Systems emes
(6)      December 5, Lecture at University of Maryland at College Park, College Park, MD


  Developing, Improving, and Applying Cloud-Resolving Models to Study Precipitation Processes



(1)       January 24, NASA MSFC,Huntsville, AL

Impact of mesoscale convective systems (MCSs) on global precipitation

(2)       March 9, Chinese Meteorological Society, Tainan, Taiwan (paid by host)

A Career in Developing, Improving, and Applying Cloud-Resolving Models to Study Precipitation Processes: My First 40 Years

(3)       March 12: National Taiwan University, Taipei, Taiwan (paid by host)

40Years in Cloud Resolving Modeling Research 

(4)       March 13: National Central University (NCU), Jhongli, Taiwan (paid by host)

40Years in Cloud Resolving Modeling Research 

(5)       April 3, University of Maryland, Baltimore County (UMBC), MD

Goddard Cumulus Ensemble Model: Development, Improvement and Application to Study Precipitation

(6)       April 30, NASA ACE SWG Workshop, Silver Spring. MD

Cloud-Resolving Models and Microphysics schemes

(7)       September 22, Central Weather Bureau, Taipei, Taiwan

A Career in Developing, Improving, and Applying Cloud-Resolving Models to Study Precipitation Processes: My First 40 Years

(8)       September 25, October 2, National Central University, Jhongli, Taiwan

GPM (CSH) Latent Heating (LH) Retrieval &

Coupled Regional Model Simulations of DYNAMO MJO

(9)       September 24, National Taiwan University, Taipei, Taiwan

Comparative Analysis of Deep Convective Cores between MC3E and TWP-ICE Cases: 
Impact of Aerosols

(10)    November 13 and 14, Korea Institute of Atmospheric Prediction Systems (KIAPS), Seoul, S Korea (Paid by host)

NU-WRF Real-time for NASA GPM GV Field Campaigns

Deep Convective Cores between MC3E and TWP-ICE Cases: Impact of Aerosols



(1)           Indian Tropical Cyclone Lab, Pune India, two talks - February 13 and 15 (paid by host)

Goddard Multi-Scale Modeling Systems with Unified Physics
TRMM Latent Heating Retrieval and Comparison with Field Campaigns and Large-scale Analyses

(2)           February 16, Indian Institute of technology (IIT), Delhi, India (paid by host)

Goddard cloud-resolving model and its microphysics schemes

(3)           March 22, GPM OLYMPEX, University Washington, Seattle, WA

NU-WRF Simulations for OLYMPEX

(4)           June 12, Nanjing University of Information Science and Technology,China (paid by host)

Goddard Multi-Scale Modeling Systems with Unified Physics

(5)           June 29, Oxford University, Oxford, UK (paid by host)

The impact of aerosol on deep convective precipitation systems

(6)           August 23, National Taiwan University, Taipei, Taiwan 

Goddard Multi-scale Modeling Systems to Study Precipitationand Aerosol Interactive Processes

(7)           September 18, 3rd ICE-POP 2018 Meeting September, Seoul, S. Korea (paid by host)

NU-WRF Real Time forecast for ICE-POP

(8)           September 22: Korean Meteorological Admiration (KMA), Seoul, S. Korea (paid by host)

Microphysics Schemes in Goddard Multi-Scale Modeling Systems

(9)           October 23, DOE Pacific Northwest National Lab (PNNL) (paid by host)

Impact of mesoscale convective systems (MCSs) on global precipitation: A modeling study

(10)        October 31, Korea Institute of Atmospheric Prediction Systems, Seoul, Korea (paid by host)

 Impact of mesoscale convective systems (MCSs) on global precipitation: A modeling study



(1)           February 17, Berlin, German – High definition clouds and precipitation for advancing climate prediction.

Microphysics Processes in Cloud – Resolving Models (Uncertainty)

(2)           March 9, National Central University, Jhongli, Taiwan (paid by host)

Cloud Resolving Modeling Research

(3)           May 26, International Workshop on Physics used in Weather and Climate models, Jeju Island, S. Korea (paid by host)

Goddard Microphysics: Status and Evaluation

(4)           November 10, 2nd ICE-POP 2018, Seoul, S. Korea (paid by host)

Microphysics Processes in Cloud – Resolving Models

(5)           December 2, CSU, Fort Collins, CO (paid by host)

Impact of mesoscale convective systems (MCSs) on global precipitation: Observation and modeling study

ICE-POP 2018 stands for International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic Winter Games